Biological Control of Two-Spotted Spider Mites

The two-spotted spider mite (TSSM), *Tetranychus urticae*, is a common pest in greenhouses with a wide host range including specialty annuals and bedding plants, herbaceous perennials, vegetables and herbs.

Biology and Life Cycle

Adult female two-spotted spider mites can live for about one month. During this time, they may lay from 100 to 200 eggs. Mite eggs are small, spherical in shape and are laid on the underside of leaves. Eggs hatch in about three days and the young mite larvae begin feeding. After transitioning through two nymphal stages, mites become adults. Optimum temperatures for spider mite development are between 85 to 95°F; with a lower threshold for development of 54°F and an upper threshold of 104° F. The life cycle from egg to adult can be completed in as little as 7 days at temperatures greater than 85° F and low relative humidity levels of 20 to 40%.

Female mites are three times more abundant than males. Fertilized adult females produce both males and females. Unfertilized adult females only produce males. Males have only one set of genes, so mutations such as pesticide resistance, are immediately expressed. Incorporating biological control strategies into your pest management program can help slow down the development of resistance.

During adverse conditions of decreasing day length, falling temperatures and decline in food supply, adult females enter a resting or overwintering stage known as diapause. Females turn bright orange red and hide in concealed places within the greenhouse. Do not confuse this resting stage with the beneficial predatory mite, *Phytoseiulus persimilis*, which is a bright orange color without the two dark spots.

Figure 1: Bright orange diapausing spider mite (within circle) compared to TSSM. Photo by L. Pundt
Scouting

Biological controls are best used preventatively, when spider mite populations are low. Weekly scouting and random plant inspections are needed to detect populations early. Carefully inspect plants in hot, dry areas of a greenhouse or where there is no overhead irrigation that wets the foliage that may wash some of the mites off the plant leaves. Regularly inspect the most susceptible cultivars or species, and look for signs of plant damage. As spider mites insert their stylet-like mouthparts into plant tissue, they suck out plant juices removing the chlorophyll. At first, you see a slight flecking or stippling (chlorotic spot) on the leaves.

Figure 2: Flecking or stippling on Buddleia leaf. Photo by L. Pundt

Figure 3: Spider mite damage on ivy geraniums resembles edema. Photo by L. Pundt
Thin-leaved plants such as garden impatiens may show injury more quickly than thick-leaved plants such as ivy geraniums. Mite feeding damage on ivy geraniums is also often mistaken for edema. As spider mite feeding continues, leaves turn yellow, bronzed and drop from the plant. When high mite populations develop, the fine webbing is extensive. Tag pest-infested plants as indicator plants to determine the effectiveness of biological control measures. A 10x to 20x hand lens is helpful to detect all stages of the mites. Because mites are easily carried on workers or their clothing, one should do routine greenhouse tasks and scout in mite-infested areas at the end of the day.

Biological Controls

Predatory mites, predatory midges and predatory beetles can all be used in a biological control program. Different species of predatory mites (*Phytoseiulus persimilis*), *Neoseiulus (Amblyseius californicus*, *Amblyseius andersonii*, *Galenromus occidentalis*, *Mesoseiulus longipes*, *Neoseiulus (Amblyseius) fallacis* are each adapted to different environmental conditions (temperature and relative humidity levels). A predatory midge (*Feltiella acarisuga*) and a predatory ladybeetle (*Stethorus punctillum*) are also commercially available.

Some of the biological control agents used against thrips such as *Neoseiulus (Amblyseius) cucumeris*, *Orius* sp. and *Amblyseius swirskii* may also feed on spider mites but cannot be relied upon for control. The generalist aphid predator, *Chrysoperla* spp. may also feed upon spider mites. Some growers may also release the generalist predatory soil dwelling mite, *Hypoaspis miles* (*Stratiolaelaps scimitus*) near perimeter walls, for use against the diapausing spider mites that are hiding in concealed places.

Phytoseiulus persimilis, a predatory mite

Adult *Phytoseiulus persimilis* feeds on all stages of two-spotted spider mites. This specialist predator can only survive by feeding upon two-spotted spider mites. The adult *P. persimilis* is bright red in color, pear shaped, long-legged and slightly larger and more active than spider mites.

![Phytoseiulus persimilis](image)

Figure 4: Phytoseiulus persimilis, an important predator of two spotted spider mites. Photo by L. Pundt
Adult females lay eggs that are about 3x the size of two-spotted spider mite eggs and are also more football shaped than the round two spotted spider mite eggs.

The development time for *P. persimilis* is shorter than for spider mites; about 5 days at 86°F, 9 days at 68°F, and 25 days at 59°F. At temperatures above 86°F, *P. persimilis* can’t keep up with the reproduction of two spotted spider mites. At low relative humidity (less than 60%), eggs shrivel and do not hatch. Optimum conditions are relative humidities above 75% and temperatures over 68°F.

P. persimilis is attracted to the chemical odors produced by plants infected with spider mites as it searches for its prey by touch and scent. Both adults and nymphs actively search plants for two-spotted spider mites. *P. persimilis* can spread through a greenhouse as long as plant leaves are in contact with each other. This biological control agent has been used in commercial greenhouses, (especially greenhouse vegetables) since the 1960’s. However, the glandular hairs on greenhouse tomato leaves reduce its dispersal.

Tips for *P. persimilis* use

- Release early when mite populations are low and two spotted spider mites are first noticed.
- This voracious, specialist predatory mite needs to have spider mite prey or it will disperse or starve.
- *P. persimilis* is available either in a granular carrier or on bean leaves with all life stages and a food source.
- When using carrier product, check first by sprinkling some of the product unto a white sheet of paper and look for the active predatory mites.
- Gently roll the tube to mix the predatory mites in the carrier before application.
- Sprinkle material on leaves.
- Concentrate releases near hot spots of mite activity.
- Relative humidity should be greater than 75% and temperature above 68°F for some hours of the day. Lightly misting plants or walkways may increase humidity levels.
- Adults and nymphs actively search for prey and suck them dry.
- Spider mite colonies should be reduced in 2 to 3 weeks.
- Contact your supplier for information on release rates. Supplier recommended release rates vary depending upon susceptibility of crops or cultivars to spider mites, length of crop time and infestation levels.
- To evaluate effectiveness, look for dead, shriveled spider mites that have been fed upon.
- For information on pesticide compatibility: consult with your supplier or with the following resources on the Internet:
Neoseilus (Amblyseius) californicus, a predatory mite

Neoseilus (Amblyseius) californicus is slower acting than P. persimilis but has a broader host range than P. persimilis and survives longer in the absence of prey by feeding upon other plant feeding mites (such as broad and cyclamen mites) and thrips. N. californicus may also feed upon mold and nectar. This slow acting predatory mite is useful for keeping low spider mite populations under control and can be released preventively. In situations where high temperature or relative humidity variations can occur, N. californicus may be a better choice than P. persimilis. You can also release N. californicus in combination with P. persimilis.

Tips for N. californius use

- Release as soon as possible after receiving.
- It is available in a granular carrier or in breeding sachets.
- Gently roll the tub to mix the predatory mites in the carrier before application.
- N. californicus is active at temperatures between 46°F to 95°F, 40-80% RH.
- Consult with your supplier for information on release rates.
- For detailed information on pesticide compatibility: consult with your supplier or with the following resources on the Internet:
 - Pesticide Side Effects Database- www.koppert.com
 - Pesticide Side Effects Database – www.biobest.be

Amblyseius andersonii, a predatory mite

This predatory mite feeds upon spider mites, broad mites, cyclamen mites and eriophyid mites. It may also survive on thrips and fungal spores in the absence of mites. A. andersonii can be released when there are low numbers of spider mites. If hot spots develop, P. persimilis can be used with A. andersonii. A. andersonii is active at a wide range of temperatures (42 - 104 °F) and can be applied to both greenhouse and outdoor crops. It is available in a granular carrier or in breeding sachets.

Neoseilus (Amblyseius) fallacis, a predatory mite

This predatory mite feeds upon spider mites, tomato rust mites and cyclamen mites. The shiny pear shaped adults (1/50 inch long) are tan to light orange in color with long legs. N. fallacis can survive in the absence of prey on other small arthropods and pollen. N. fallacis tolerates a wide range of temperatures (48-85° F) but does best where there is a dense plant canopy and relative humidity over 50%. N. fallacis is available on bean leaves or in a granular carrier. You can also release N. fallacies in combination with P. persimilis.
Galendromus occidentalis, a predatory mite

This predatory mite feeds upon two-spotted spider mites. *G. occidentalis* does best at temperatures between 50-115°F and 30 to 60% relative humidity. If mite populations are low, *G. occidentalis* can feed upon pollen. *G. occidentalis* is available in a granular carrier.

Mesoseilus longipes, a predatory mite

This predatory mite feeds upon spider mites and does best at temperatures between 80-90 °F but can tolerate lower humidity levels (40% RH at 70°F).

Feltiella acarisuga, a predatory midge

A small (1/16 of an inch long) predatory gall midge (*Feltiella acarisuga*) feeds on two-spotted spider mites. (Another species of gall midge is commercially available for use against aphids.) Adults live for 2 or 3 days, are more active at night and rest during the day on the underside of leaves. Females lay orange to red eggs among the spider mite colonies, eggs hatch in 3 to 5 days. The larvae stage is the only predacious stage.

![Predatory midge larvae](image)

Figure 5: Predatory midge larvae. Photo by L. Pundt

After about a week of feeding, larvae pupate on the underside of leaves forming tiny, white velutinous pupal cocoons.
Adults emerge from the pupae. *Feltiella* develops from egg to adult in 10 days at 80° F to 34 days at 59°F with relative humidity between 60 to 95%. Extended periods of relative humidity below 60% may reduce their survival and reproduction, optimum relative humidity is 80%. This predatory mite is active year round and does not have a winter resting stage.

Feltiella is shipped in the pupal stage and adults emerge soon after arrival. They are best released late at night or early in the morning. *Feltiella* can be used with *P. persmilis* (depending upon the crop and pest levels). Adults are excellent flyers so they may be able to reach handing baskets and other hard to reach ornamental crops. *Feltiella* is also able to forage on the hairy leaves of greenhouse tomatoes whereas the tomato’s glandular hairs reduce the survival and reproduction of *P. persmilis*.

Tips for *Feltiella acarisuga* use

- Commercially available as pupae on paper pieces in pots or boxes. Pierce paper disc on the cover, so the adult midges can emerge.
- Open the box containing the predatory midges, place close to spider mite infestations. Let box stand for one week until adults have emerged.
- When scouting, look for the nearly white pupal cases near the midrib on the leaf undersides and for the bright orange larvae.
- For more detailed information on pesticide compatibility: consult with your supplier or with the following resources on the Internet:
 - Pesticide Side Effects Database- www.koppert.com
 - Pesticide Side Effects Database – www.biobest.be
Stethorus punctillum, a predatory ladybird beetle

This small, (1/10 of an inch long) black predatory beetle feeds on all life stages of spider mites. Adults can fly, allowing them to locate spider mite colonies that are not accessible to predatory mites. Their yellow oval eggs are laid singly in or near mite colonies. Larvae are slow moving with conspicuous legs. Larvae and adults feed on all stages of spider mites. Optimum conditions are moderate to high temperatures (61-90˚ F). They can also feed on small arthropod eggs, aphids, nectar, and pollen. *Stethorus* prefer smooth leaved plants and can’t readily travel the hairy leaves of greenhouse tomatoes. These predatory ladybird beetles are best used in combination with predatory mites.

Regular monitoring, in conjunction with cultural controls help insure the successful use of predatory mites, midges and beetles against spider mites.

References:

By Leanne Pundt, Extension Educator, University of Connecticut, 2007, updated 2014
Disclaimer for Fact Sheets:

The information in this document is for educational purposes only. The recommendations contained are based on the best available knowledge at the time of publication. Any reference to commercial products, trade or brand names is for information only, and no endorsement or approval is intended. UConn Extension does not guarantee or warrant the standard of any product referenced or imply approval of the product to the exclusion of others which also may be available. The University of Connecticut, UConn Extension, College of Agriculture, Health and Natural Resources is an equal opportunity program provider and employer.